Accurate identification can help improve the care and management of patients with AADC deficiency^{1,2}

Aromatic L-amino Acid Decarboxylase (AADC) deficiency is a genetic disease associated with defects in neurotransmitter synthesis that can lead to a manifestation of a broad spectrum of symptoms. The most common symptoms of this autosomal recessive disorder include hypotonia, developmental delay, and movement disorders, especially oculogyric crises.³⁻⁶

Diagnostic pathway for suspected AADC deficiency^{2,4}

TEST FOR AADC DEFICIENCY	
Core diagnostic tests	Results
Confirmatory single gene or genetic panel	Mutation(s) in the DDC gene
Plasma enzyme activity assay	LOW plasma AADC enzyme activity
CSF neurotransmitter metabolite panel	REDUCED HVA, 5-HIAA, and MHPG ELEVATED 3-OMD, L-dopa, and 5-HTP NORMAL pterins

Adapted from Himmelreich 2019.²

Current consensus guidelines recommend genetic testing in combination with CSF neurotransmitter metabolite panel and/or plasma AADC enzyme activity assay to confirm a diagnosis of AADC deficiency.⁴

Genetic testing can help uncover mutation(s) in the DDC gene to confirm a diagnosis of AADC deficiency and is available at no cost through PTC Pinpoint^{™4}

3-OMD=3-O-methyldopa; 5-HIAA=5-hydroxyindoleacetic acid; 5-HTP=5-hydroxytryptophan; CP=cerebral palsy; CSF=cerebrospinal fluid; DDC=dopa decarboxylase; HVA=homovanillic acid; L-dopa=L-3,4-dihydroxyphenylalanine; MHPG=3-methoxy-4-hydroxyphenylglycol; MRI=magnetic resonance imaging.

PTC Therapeutics and Invitae have partnered to offer no-cost genetic testing, including:

- Programs for individuals at all ages with a suspected neurotransmitter disorder or symptoms suggestive of CP in the absence of risk factors for acquired brain injury
- Post-test genetic counseling
- > Family variant testing for blood relatives of those with confirmed or likely pathogenic variants

Learn more about PTC Pinpoint below or contact your PTC Therapeutics representative.

*Both the Neurotransmitter Disorders Panel and CP Spectrum Disorders Panel are available for order through Invitae and are separate from the no-cost PTC Pinpoint program.

Additional testing for AADC deficiency

Other tests that may be helpful include⁷⁻¹⁰:

- > Blood level measurement of 3-OMD
- > Urinary organic acid analysis

Why test for 3-OMD?

Reduced AADC enzyme activity results in an increase in L-dopa, 3-OMD, and 5-HTP, and a decrease in the neurotransmitter metabolites HVA and 5-HIAA.^{1,3,4,11}

Typically, the diagnosis of AADC deficiency requires CSF neurotransmitter analysis. However, 3-OMD, which is a catabolic product of L-dopa that accumulates in individuals with AADC deficiency, can be detected in their blood. 3-OMD measurement in plasma represents a less invasive, simple, rapid, and valid measure for detecting AADC deficiency.^{7,10}

References: 1. Pons R, Ford B, Chiriboga CA, et al. Aromatic L-amino acid decarboxylase deficiency: clinical features, treatment, and prognosis. *Neurology*. 2004;62(7):1058-1065.
2. Himmelreich N, Montioli R, Bertoldi M, et al. Aromatic amino acid decarboxylase deficiency: molecular and metabolic basis and therapeutic outlook. *Mol Genet Metab*. 2019;127(1):12-22. doi: 10.1016/j.ymgme.2019.03.009.
3. Brun L, Ngu LH, Keng WT, et al. Clinical and biochemical features of aromatic L-amino acid decarboxylase deficiency. *Neurology*. 2010;75(1):64-71.
4. Wassenberg T, Molero-Luis M, Jeltsch K, et al. Consensus guideline for the diagnosis and treatment of aromatic I-amino acid decarboxylase (AADC) deficiency. *Orphanet J Rare Dis*. 2017;12(1):12. doi: 10.1186/s13023-016-0522-z.
5. Manegold C, Hoffmann GF, Degen I, et al. Aromatic L-amino acid decarboxylase deficiency: clinical features, drug therapy and follow-up. *J Inherit Metab Dis*. 2009;32(3):371-380.
6. Hwu WL, Chien YH, et al. Diagnosis of aromatic L-amino acid decarboxylase deficiency in Taiwan. *JIMD Rep*. 2018;40:1-6. doi: 10.1007/8904_2017_54.
7. Chen PW, Lee NC, Chien YH, et al. Diagnosis of aromatic L-amino acid decarboxylase deficiency in Taiwan. *JIMD Rep*. 2018;40:1-6. doi: 10.1007/8904_2017_54.
8. Monteleone B, Hyland K. Case report: discovery of 2 gene variants for aromatic L-amino acid decarboxylase deficiency in 2 African American siblings. *BMC Neurol*. 2020;20(1):12. doi: 10.1186/s12883-019-1596-8.
9. Chien YH, et al. 3-O-methyldopa levels in newborns: result of newborn screening for aromatic L-amino-acid decarboxylase deficiency. *Mol Genet Metab*. 2016;118(4):259-263.
10. Brennenstuhl H, Kohlmüller D, Gramer G, et al. High throughput newborn screening for aromatic L-amino-acid decarboxylase deficiency. *Mol Genet Metab*. 2016;118(4):259-263.
10. Brennenstuhl H, Kohlmüller D, Gramer G, et al. High throughput newborn screening for aromatic L-amino-

